आर्टिफिशियल इंटेलिजेंस कैसे तेजी से वादा करता है, अधिक सटीक स्वास्थ्य निदान

आर्टिफिशियल इंटेलिजेंस कैसे तेजी से वादा करता है, अधिक सटीक स्वास्थ्य निदान जैसे-जैसे मशीन सीखने की प्रगति होती है, इसके अनुप्रयोगों में तेज, अधिक सटीक चिकित्सा निदान शामिल होते हैं। Shutterstock

जब Google DeepMind के AlphaGo ने 2016 में दिग्गज Go खिलाड़ी ली सेडोल को बुरी तरह से हराया, तो कृत्रिम बुद्धिमत्ता (AI), मशीन लर्निंग और डीप लर्निंग को तकनीकी मुख्यधारा में बदल दिया गया।

BBC Newsnight: अल्फाज़ो और आर्टिफिशियल इंटेलिजेंस का भविष्य।

{यूट्यूब] 53YLZBSS0cc {/ यूट्यूब}

AI को आमतौर पर कंप्यूटर या मशीन के लिए बुद्धिमान व्यवहार जैसे प्रदर्शन या अनुकरण करने की क्षमता के रूप में परिभाषित किया जाता है टेस्ला की सेल्फ ड्राइविंग कार तथा एप्पल के डिजिटल सहायक सिरी। यह एक संपन्न क्षेत्र है और ज्यादा शोध और निवेश का केंद्र है। मशीन लर्निंग एक एआई प्रणाली की क्षमता है जो कच्चे डेटा से जानकारी निकालती है और नए डेटा से भविष्यवाणियां करना सीखती है।

डीप लर्निंग मशीन लर्निंग के साथ आर्टिफिशियल इंटेलिजेंस को जोड़ती है। यह कृत्रिम तंत्रिका नेटवर्क नामक मस्तिष्क की संरचना और कार्य से प्रेरित एल्गोरिदम से संबंधित है। दीप लर्निंग ने उपभोक्ता जगत और चिकित्सा समुदाय दोनों में हाल ही में बहुत ध्यान आकर्षित किया है।

एलेक्स क्रिजेव्स्की द्वारा डिजाइन किए गए एक तंत्रिका नेटवर्क, एलेक्सनेट की सफलता के साथ गहरी सीखने में रुचि 2012 इमेजनेट लार्ज स्केल विजुअल रिकॉग्निशन चैलेंज, एक वार्षिक छवि वर्गीकरण प्रतियोगिता।

एक और अपेक्षाकृत हाल ही में उन्नति ग्राफिकल प्रोसेसिंग यूनिट्स (GPUs) का उपयोग गहन शिक्षण एल्गोरिदम को शक्ति प्रदान करने के लिए है। जीपीयू गहन शिक्षण अनुप्रयोगों के लिए आवश्यक संगणना (गुणन और परिवर्धन) में उत्कृष्टता प्राप्त करता है, जिससे अनुप्रयोग प्रसंस्करण समय कम होता है।


इनरसेल्फ से नवीनतम प्राप्त करें


सस्केचेवान विश्वविद्यालय में हमारी प्रयोगशाला में हम स्वास्थ्य सेवा अनुप्रयोगों से संबंधित रोचक गहन शिक्षण अनुसंधान कर रहे हैं - और इलेक्ट्रिकल और कंप्यूटर इंजीनियरिंग के प्रोफेसर के रूप में, मैं अनुसंधान दल का नेतृत्व करता हूं। जब स्वास्थ्य देखभाल की बात आती है, तो निदान करने के लिए एआई या मशीन सीखने का उपयोग करना नया है, और रोमांचक और आशाजनक प्रगति हुई है।

आंख में रक्त वाहिकाओं को निकालना

असामान्य रेटिना रक्त वाहिकाओं का पता लगाना मधुमेह और हृदय रोग के निदान के लिए उपयोगी है। विश्वसनीय और सार्थक चिकित्सा व्याख्याएं प्रदान करने के लिए, रेटिना पोत को विश्वसनीय और सार्थक व्याख्याओं के लिए रेटिना छवि से निकाला जाना चाहिए। यद्यपि मैनुअल विभाजन संभव है, यह एक जटिल, समय लेने वाली और थकाऊ कार्य है जिसे उन्नत पेशेवर कौशल की आवश्यकता होती है।

मेरी शोध टीम ने एक प्रणाली विकसित की है जो रेटिना की रक्त वाहिकाओं को एक कच्ची रेटिनल छवि को पढ़कर विभाजित कर सकती है। यह है एक कंप्यूटर एडेड निदान प्रणाली जो आंखों की देखभाल के विशेषज्ञों और नेत्र रोग विशेषज्ञों द्वारा आवश्यक काम को कम करती है, और उच्च सटीकता बनाए रखते हुए 10 बार छवियों को संसाधित करता है।

फेफड़ों के कैंसर का पता लगाना

कंप्यूटर टोमोग्राफी (सीटी) फेफड़ों के कैंसर के निदान के लिए व्यापक रूप से उपयोग किया जाता है। हालाँकि, क्योंकि सीटी स्कैन में सौम्य (गैर-कैंसर) और घातक (कैंसर वाले) घावों के दृश्य प्रतिनिधित्व समान होते हैं, सीटी स्कैन हमेशा एक विश्वसनीय निदान प्रदान नहीं कर सकता है। कई वर्षों के अनुभव के साथ एक थोरैसिक रेडियोलॉजिस्ट के लिए भी यह सच है। का तेजी से विकास सीटी स्कैन विश्लेषण स्क्रीनिंग प्रगति के साथ रेडियोलॉजिस्ट की सहायता के लिए उन्नत कम्प्यूटेशनल टूल के लिए एक दबाने की आवश्यकता उत्पन्न हुई है।

रेडियोलॉजिस्ट के नैदानिक ​​प्रदर्शन को बेहतर बनाने के लिए, हमने एक गहन शिक्षण समाधान प्रस्तावित किया है। हमारे शोध के निष्कर्षों के आधार पर, हमारे समाधान ने रेडियोलॉजिस्ट का अनुभव किया। इसके अलावा, एक गहन सीखने-आधारित समाधान का उपयोग करने से नैदानिक ​​प्रदर्शन में सुधार होता है और रेडियोलॉजिस्ट कम अनुभव के साथ सिस्टम से सबसे अधिक लाभान्वित होते हैं।

प्रौद्योगिकी फेफड़े के कैंसर का पता लगाने वाले सॉफ्टवेयर का स्क्रीनशॉट। सेकोबम को, लेखक प्रदान की

सीमाएँ और चुनौतियाँ

यद्यपि रेडियोलॉजी और चिकित्सा के विभिन्न कार्यों में गहन सीखने के एल्गोरिदम के साथ महान वादा दिखाया गया है, लेकिन ये प्रणालियां परिपूर्ण नहीं हैं। उच्च-गुणवत्ता वाले एनोटेट डेटासेट प्राप्त करना गहन शिक्षण प्रशिक्षण के लिए एक चुनौती बना रहेगा। अधिकांश कंप्यूटर दृष्टि अनुसंधान प्राकृतिक छवियों पर आधारित है, लेकिन स्वास्थ्य सेवा अनुप्रयोगों के लिए, हमें बड़ी एनोटेट चिकित्सा छवि डेटासेट की आवश्यकता होती है।

नैदानिक ​​दृष्टिकोण से एक और चुनौती यह परीक्षण करने का समय होगा कि मानव रेडियोलॉजिस्ट के विपरीत कितनी गहरी सीखने की तकनीक प्रदर्शन करती है।

चिकित्सकों और मशीन सीखने वाले वैज्ञानिकों के बीच अधिक सहयोग की आवश्यकता है। मशीन सीखने की तकनीक के लिए मानव शरीर विज्ञान की जटिलता की उच्च डिग्री भी एक चुनौती होगी।

एक अन्य चुनौती नैदानिक ​​कार्यान्वयन के लिए एक गहन शिक्षण प्रणाली को मान्य करने की आवश्यकता है, जिसके लिए बहु-संस्थागत सहयोग और बड़े डेटासेट की आवश्यकता होगी। अंत में, गहरी शिक्षण प्रणालियों के तेजी से प्रसंस्करण को सुनिश्चित करने के लिए एक कुशल हार्डवेयर प्लेटफॉर्म की आवश्यकता होती है।

स्वास्थ्य सेवा की जटिल दुनिया में, एआई उपकरण तेजी से सेवा और अधिक सटीक निदान प्रदान करने के लिए मानव चिकित्सकों का समर्थन कर सकते हैं, और रुझानों या आनुवांशिक जानकारी की पहचान करने के लिए डेटा का विश्लेषण कर सकते हैं जो किसी विशेष बीमारी के लिए किसी व्यक्ति को सूचित कर सकते हैं। जब सेविंग मिनट का मतलब जीवन की बचत हो सकता है, तो AI और मशीन लर्निंग स्वास्थ्य कार्यकर्ताओं और रोगियों के लिए परिवर्तनकारी हो सकती है।वार्तालाप

के बारे में लेखक

सेकोबम को, प्रोफेसर, सस्केचेवान विश्वविद्यालय

इस लेख से पुन: प्रकाशित किया गया है वार्तालाप क्रिएटिव कॉमन्स लाइसेंस के तहत। को पढ़िए मूल लेख.

संबंधित पुस्तकें

{amazonWS: searchindex = Books; कीवर्ड्स = कृत्रिम बुद्धिमत्ता का भविष्य; मैक्समूलस = 3}

enafarzh-CNzh-TWnltlfifrdehiiditjakomsnofaptruessvtrvi

InnerSelf पर का पालन करें

फेसबुक आइकनट्विटर आइकनआरएसएस आइकन

ईमेल से नवीनतम प्राप्त करें

{Emailcloak = बंद}

इनर्सल्फ़ आवाज

चुनने की स्वतंत्रता की दुविधा
चुनने की स्वतंत्रता की दुविधा
by लिस्केट स्कूटेमेकर

सबसे ज़्यादा पढ़ा हुआ

संपादकों से

ब्लू-आइज़ बनाम ब्राउन आइज़: कैसे नस्लवाद सिखाया जाता है
by मैरी टी। रसेल, इनरएसल्फ़
1992 के इस ओपरा शो एपिसोड में, पुरस्कार विजेता विरोधी नस्लवाद कार्यकर्ता और शिक्षक जेन इलियट ने दर्शकों को नस्लवाद के बारे में एक कठिन सबक सिखाया, जो यह दर्शाता है कि पूर्वाग्रह सीखना कितना आसान है।
बदलाव आएगा...
by मैरी टी। रसेल, इनरएसल्फ़
(३० मई, २०२०) जैसे-जैसे मैं देश के फिलाडेपिया और अन्य शहरों में होने वाली घटनाओं पर खबरें देखता हूं, मेरे दिल में दर्द होता है। मुझे पता है कि यह उस बड़े बदलाव का हिस्सा है जो ले रहा है ...
ए सॉन्ग कैन अपलिफ्ट द हार्ट एंड सोल
by मैरी टी। रसेल, इनरएसल्फ़
मेरे पास कई तरीके हैं जो मैं अपने दिमाग से अंधेरे को साफ करने के लिए उपयोग करता हूं जब मुझे लगता है कि यह क्रेप्ट है। एक बागवानी है, या प्रकृति में समय बिता रहा है। दूसरा मौन है। एक और तरीका पढ़ रहा है। और एक कि ...
क्यों डोनाल्ड ट्रम्प इतिहास के सबसे बड़े हारने वाले हो सकते हैं
by रॉबर्ट जेनिंग्स, इनरएसल्फ़। Com
इस पूरे कोरोनावायरस महामारी की कीमत लगभग 2 या 3 या 4 भाग्य है, जो सभी अज्ञात आकार की है। अरे हाँ, और, हजारों की संख्या में, शायद लाखों लोग, समय से पहले ही एक प्रत्यक्ष रूप से मर जाएंगे ...
सामाजिक दूर और अलगाव के लिए महामारी और थीम सांग के लिए शुभंकर
by मैरी टी। रसेल, इनरएसल्फ़
मैं हाल ही में एक गीत पर आया था और जैसे ही मैंने गीतों को सुना, मैंने सोचा कि यह सामाजिक अलगाव के इन समयों के लिए एक "थीम गीत" के रूप में एक आदर्श गीत होगा। (वीडियो के नीचे गीत।)